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A B S T R A C T

Reinforcement Learning has emerged as a promising approach to implement efficient data-driven controllers for
a variety of applications. In this paper, a Deep Deterministic Policy Gradient (DDPG) algorithm is used to train
a Vertical Stabilization agent, to be considered as a possible alternative to the model-based solutions usually
adopted in existing machines. The agent is trained and validated considering the ITER tokamak magnetic
control as case study environment. The tuning of the DDPG algorithm’s hyper-parameters is motivated through
a sensitivity analysis.
1. Introduction

The axisymmetrical magnetic control of plasma is a well-understood
problem in tokamak control [1,2], as well as the Vertical Stabiliza-
tion (VS) one, which occurs when vertically unstable elongated plasmas
are pursued. Such a control problem is usually solved by means of
model-based control techniques, which rely on control-oriented models
describing the response of the plasma and of the surrounding con-
ductive structures. In order to achieve the required robustness, it is
very common to resort to adaptive control strategies that take into
account the features of the considered plasma scenario and of the
specific experimental device. As an example see [3] for the VS system
at the JET, [4] for the DIII-D system, [5] for ITER, and [6] for DEMO.

Data-driven approaches represent an alternative to achieve the re-
quired level of robustness. Indeed, a possibility is to exploit the capa-
bility of Reinforcement Learning (RL) algorithms to learn from data in
order to obtain a single VS agent able to robustly deal with the different
plasma operating conditions.

RL is a framework that allows solving control problems by making
an agent (the controller) interact with the environment (the plant), via
a trial and error strategy, until an optimal control policy is reached [7].
In particular, this approach allows to specify control goals in terms of a
scalar reward function, meaning that the agent is not told which actions
to take a priori, but it decides what to do based on the observations com-
ing from the environment and a reward signal expressing how well it
has performed (see Fig. 1). The training procedure aims at maximizing
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the cumulative long-term reward, i.e. the sum of the episode rewards
in the long run.

A preliminary attempt to solve the VS problem using a RL approach
is reported in [8], where a tabular approach, based on the Q-learning
algorithm, was adopted. An application of Deep Reinforcement Learn-
ing (DRL) to the whole plasma magnetic control system can be found
in [9], where an unprecedented control architecture design is described
and experimentally validated on TCV.

In this paper, we investigate the applicability of DRL to the VS
problem. With respect to the standard Q-learning algorithm used in [8],
the DDPG algorithm adopted here allows considering continuous action
and state spaces, essential for a fair representation of the plasma
behavior. Moreover, in addition to what has been proposed in [8],
not only the VS system but the whole ITER plasma magnetic control
is taken into account during the training process.

The main objective of this paper is not only to obtain a data-
driven VS agent and validate it against scenarios not considered during
the training but primarily to highlight the strategy adopted to tune
the algorithm hyper-parameters. Indeed, even if their tuning plays an
important role in eliciting the best results, the optimal choice or the
range of values considered is often not reported in the literature (refer
to [10] for a wider analysis).

The rest of the article is organized as follows. The next section
describes in detail how the DRL has been exploited to solve the VS
problem for the ITER tokamak. The validation of the proposed solu-
tion is presented in Section 3, where a sensitivity analysis on the RL
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Fig. 1. DDPG scheme of interaction between the RL environment of plasma magnetic
ontrol and the actor–critic VS agent.

raining hyper-parameters is also reported. Some conclusive remarks
re eventually given in Section 4.

. Simulation setup

A scheme showing how the DRL agent has been applied to the
TER VS is shown in Fig. 1. The agent interacts with a RL environment,
onsting of a linear model of the plasma dynamics generated by the
REATE-NL equilibrium code [11], the power supplies model, and
hich includes the interaction of the VS system with the other magnetic
2

ontrol loops, i.e. the plasma current and shape controllers.
More in detail, the considered plasma linearized model can be
written as

̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸�̇�(𝑡) (1a)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐹𝑤(𝑡) , (1b)

here:

• the state vector 𝑥 =
(

𝛿𝐼𝑇𝑃𝐹 𝛿𝐼𝑒 𝛿𝐼𝑝
)𝑇 holds the variations of

the PF currents, of the currents in the passive conductive struc-
tures, and of the plasma current. The current in the PF circuits
can be further partitioned as 𝛿𝐼𝑃𝐹 =

(

𝛿𝐼𝑇𝑆𝐶 𝛿𝐼𝑉 𝑆
)𝑇 , where 𝛿𝐼𝑆𝐶

is the vector of the currents variations in the ex-vessel super-
conductive circuits used for plasma current and shape control,
while 𝛿𝐼𝑉 𝑆 is the current variation in the in-vessel copper-made
circuit dedicated to vertical stabilization. It is worth noticing
that, since the linear model describes the plasma behavior around
a given equilibrium, it is 𝛿𝐼𝑉 𝑆 = 𝐼𝑉 𝑆 , being the equilibrium
in-vessel current equal to zero;

• the input vector 𝛿𝑢𝑃𝐹 =
(

𝛿𝑢𝑆𝐶 𝛿𝑢𝑉 𝑆
)𝑇 consists of the voltage

variations applied to the control circuits. As for the current in the
in-vessel coils, given that all the input voltages are equal to zero
at the equilibrium, it turns out that 𝛿𝑢𝑃𝐹 = 𝑢𝑃𝐹 =

(

𝑢𝑆𝐶 𝑢𝑉 𝑆
)𝑇 ;

• 𝑤 =
(

𝛿𝛽𝑝 𝛿𝑙𝑖
)𝑇 is the vector of the variations of poloidal beta 𝛽𝑝

and internal inductance 𝑙𝑖, that can be regarded as exogenous
disturbances, as far as magnetic control is concerned.

he simulation scheme used in this work as training and validation
nvironment for the proposed VS agent is shown in Fig. 2.

The actuator considered for the VS agent is the in-vessel circuit, with
he control action as 𝑎 = 𝑢𝑉 𝑆 . The feedback signals are gathered in the
bserved vector 𝑠 = (𝐼𝑉 𝑆 , 𝑦𝑚𝑎𝑔), and are, respectively, the current in
he VS circuit 𝐼𝑉 𝑆 , and the vector of magnetic diagnostic signals 𝑦𝑚𝑎𝑔 ,
hat are part of the model outputs and normally used to reconstruct the
lasma centroid vertical position 𝑍𝑐 and velocity �̇�𝑐 . Specifically, the
easurements of in-vessel Mirnov coils and flux sensors are included

n 𝑦𝑚𝑎𝑔 .
The RL algorithm implemented is a model-free and off-policy method

alled DDPG. The DDPG agent is an actor-critic method, which simulta-
eously learns the control policy function and evaluates it (see Fig. 1).
he actor and critic neural networks are feed-forward networks with
Fig. 2. Simulation scheme used as environment for both training and validation of RL-based VS agent. The scheme includes the plasma-coils model, the model of the power
upplies as well as the controllers for both plasma current and shape.
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Fig. 3. Actor and Critic networks architecture. The networks are only feed-forward,
ith no recurrent element, and have been implemented using fully connected layers.

ully connected layers and they have been implemented as reported
n Fig. 3. Rectified Linear Unit (ReLU) activation functions have been
hosen, defined as 𝑅𝑒𝐿𝑈 (𝑥) = max(𝑥, 0) .

The chosen reward function is chosen as a function of the agent
tate 𝑠 and action 𝑎, and is given by:

(𝑠 , 𝑎) = −𝑘1 ⋅

(

�̇�𝑐 (𝑦𝑚𝑎𝑔)

�̇�𝑐max

)2

− 𝑘2 ⋅

(

𝐼𝑉 𝑆
𝐼𝑉 𝑆max

)2

− 𝑘3 ⋅

(

𝑢𝑉 𝑆
𝑢𝑉 𝑆max

)2

(2)

where �̇�𝑐max
, 𝐼𝑉 𝑆max

and 𝑢𝑉 𝑆max
, respectively, refer to the maximum

alues specified for the plasma centroid vertical speed and the in-vessel
oils current and voltage. A proper value for �̇�𝑐max

was found by ana-
yzing the results of past simulations carried out with the model-based
S system proposed in [12].

The reward function (2) reflects the main objective of a VS sys-
em i.e. to stop the unstable vertical motion of the plasma to avoid
isruption while keeping the in-vessel current as low as possible, and
imiting the control voltage. An additional penalty is then added to
he reward (2) and the training episode is terminated if the centroid
osition variation with respect to the equilibrium value 𝛿𝑍𝑐 exceeds
threshold over which disruption cannot be avoided. Furthermore,
+2 bonus is added to (2) at each simulation time step if the agent
anages to keep 𝛿𝑍𝑐 within the prescribed bound. These bonuses,

ummed over all the episode time samples, turn into a maximum value
or the cumulative reward that becomes positive. In particular, given
he sampling time 𝑇𝑠 = 2.5 ms, the possible maximum cumulative
eward could be 4000 for the episodes whose duration is equal to 5 s
see Figs. 4, 6 and 7), while if the episode duration is 20 s the maximum
ould reach 16000 (see Fig. 5).

Moreover, at each time step of the DDPG training process the
xpected reward 𝑦𝑖 is computed as

𝑖 = 𝑅𝑖 + 𝛤𝑄(𝑠𝑖+1, 𝑎𝑖+1) (3)

here 𝑅𝑖 is the experienced reward at the 𝑖th step, 𝛤 is the discount
actor and 𝑄(𝑠𝑖+1, 𝑎𝑖+1) is the action-value function predicted by the
ritic network. The discount factor in RL algorithm serves to specify
ow much the agent cares about fuure rewards with respect to the
mmediate one. In (3), 𝛤 is used to scale the value of 𝑄 that represents
he estimated future cumulative rewards.

The described setup has been implemented in MATLAB® by us-
ng the Reinforcement Learning Toolbox® [13], in order to exploit
imulink® to integrate the VS agent with the other components of
he ITER plasma magnetic control, already available in this environ-
3

ent.
Fig. 4. Episodes cumulative rewards obtained with the best choice of the considered
hyper-parameters and for the reward function coefficients set equal to 𝑘1 = 1 , 𝑘2 =
, 𝑘3 = 1 (which also correspond to the setup considered for Training A in Section 3.2).

. Results

In this section, the training of the VS agent and its validation are dis-
ussed. In particular, the sensitivity analysis which allowed to choose
he best-performing set of training hyper-parameters is reported in
ection 3.1, while the validation of the obtained VS agents is illustrated
n Section 3.2.

.1. Sensitivity analysis

The effects of some hyper-parameters and their tuning are analyzed
ith respect to reward convergence. This study allowed finding the

et of parameters that led to the successful training of the VS agent.
pecifically, in this paper, we consider the effect of the following hyper-
arameters: episode duration, number of hidden layers for both the
ctor and critic networks and action-noise variance decay rate. Table 1
eports the setting of all the DDPG hyper-parameters and the range of
ariation for those that have been changed during our analysis.

Fig. 4 reports the training graph, i.e. the trace of the cumulative
eward as a function of the 𝑖th episode, when the coefficients in (2)
re set equal to 𝑘1 = 1 , 𝑘2 = 2 , 𝑘3 = 1, and the optimal choice for the
hree considered hyper-parameters has been made. In particular, the
atter have been set equal to the values reported in bold in Table 1.

In the following, for each hyper-parameter variation considered the
orresponding training graph is reported, and a brief discussion is made
o motivate our choice. Notice that in the training graph not only
he trace of the cumulative reward as a function of the 𝑖th episode

is reported (lighter trace), but also the averaged cumulative reward
(darker trace) over the 20 most recent episodes

Episode duration
Initially, the duration of an episode has been set equal to 20 s; the

corresponding training is shown in Fig. 5. Comparing this training with
the one shown in Fig. 4, it can be seen that a longer interaction between
the DDPG agent and the plasma environment leads to higher rewards,
but does not ensure convergence toward an optimum. Moreover, when
the episode duration is set equal to 20 s, the obtained agents focus more
on satisfying the performance at steady-state, rather than during the
transient. Therefore, an episode duration of 5 s has been chosen for the

agent training procedure.
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Table 1
Set of the DDPG hyper-parameters. The range of variations exploited
during the sensitivity analysis is specified for those parameters whose
setting was changed. When multiple values are specified, those reported
in boldface are the ones chosen to obtain the results reported in Fig. 4.
Hyper-parameter Considered values

Sampling time 𝑇𝑠 2.5 ms
Episode duration 𝑇 𝟓 𝐬 20 s
Actor learning rate 5 × 10−4

Critic learning rate 10−3

Actor hidden layers #m 𝟔𝟒 128
Critic hidden layers #n 𝟑𝟐 128
Discount factor 𝛤 0.99
Batch size 256
OUP variance 1840
OUP variance decay rate 𝟖.𝟔𝟔 × 𝟏𝟎−𝟔 3.5 × 10−6

Fig. 5. Episodes cumulative rewards obtained with an episode duration of 20 s.

OUP variance decay rate
The agent uses the Ornstein–Uhlenbeck action noise model for

exploration. The noise variance and its decay rate are computed as

𝜎2 ⋅
√

𝑇𝑠 = (1% 𝑡𝑜 10%) 𝑜𝑓 𝛥𝐴

hile its half-life, in time steps, is given by

𝐿 =
ln (0.5)

ln(1 − 𝜎2𝑑𝑟)

where 𝜎2 is the noise variance, 𝛥𝐴 is the range of the action variable,
𝐿 is the noise half-life and 𝜎2𝑑𝑟 is the noise variance decay rate. Two

alues of the decay rate have been considered in our analysis. This
arameter has been first set equal to 3.5 × 10−6, which is equivalent
o about 2 × 105 time samples. The resulting training, reported in
ig. 6, shows that even if the exploration seems to terminate after
bout 1000 episodes, there is a sudden drop in the reward value

between episodes 1700 and 2200, after which the agent does not fully
recover. On the other hand, when the decay rate is set equal to 8.66 ×
10−6, corresponding to a variance half-life of about 8×104 time samples,
the results shown in Fig. 4 are obtained. In this case, once the plateau
is reached, the behavior of the reward oscillates less up to episode 2500.
Therefore, in our setup, we set the decay rate equal to 8.66 × 10−6.

Critic and actor hidden layers size
The first choice of the size for the fully connected layers in both

the critic and actor networks architecture was equal to 128, as shown
in Fig. 3. From the training reported in Fig. 7, it appears that
the network architectures can significantly impact the results and the
4

convergence and that considering a simpler network can produce better
Fig. 6. Episodes cumulative rewards obtained with a agent noise decay rate of 3.5 ×
10−6.

Fig. 7. Episodes cumulative rewards obtained with, both actor and critic networks
implemented using fully connected layers with a size 128.

results. Hence, in the training reported in Fig. 4, 64 layers were chosen
for the actor, and 32 for the critic.

3.2. Agents validation

For the agent validation, two equilibria different from the one
used during the training have been taken into account. The nominal
values of the plasma parameters for which the corresponding free-
boundary equilibrium problem has been solved are reported in Table 2.
All the considered equilibria correspond to different time instants of
a 15 MA ITER discharge. Eq. #1 (the one used for training) and Eq. #2
are two different snapshots taken at the beginning of the 15 MA flat-top,
while Eq. #3 refers to the end of the flat-top. More in detail, Eq. #2 is
taken before the transition from low to high confinement, while Eq. #1
is an equilibrium taken soon after such a transition. As for the linear
state space of Eq. #1, also the models of the two validation equilibria
have been generated by the CREATE-NL equilibrium code.

In addition to an agent obtained from the training shown in Fig. 4
(hereafter referred to as Training A), two more agents have been se-
lected; these correspond to two alternative choices of the reward func-
tion aimed at improving the VS performance, and in particular at
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Table 2
Plasma parameters for the equilibria considered for the VS
agents training and validation. They correspond to an equi-
librium 𝐼𝑝 of 15 MA, while the table reports the values of the
profile parameters 𝛽𝑝𝑒𝑞 and 𝑙𝑖𝑒𝑞 , and of plasma growth rate 𝛾.

ITER equilibrium 𝛽𝑝𝑒𝑞 𝑙𝑖𝑒𝑞 𝛾

Eq. #1 (Training) 0.66 0.88 4.9 s−1
Eq. #2 (Validation) 0.08 0.92 9.1 s−1
Eq. #3 (Validation) 0.82 0.71 2.9 s−1

Table 3
Values of the penalty parameters in the reward function (2) for
the different considered training.

𝐤𝟏 𝐤𝟐 𝐤𝟑 𝐤𝟒
Training A 1 2 1 0
Training B 1 2000 1 0
Training C 1 10 1 20

reducing the steady-state current in the in-vessel coils. Namely, Train-
ing B, corresponds to a higher value of 𝑘2, while Training C was

obtained by adding the term −𝑘4 ⋅
(

𝐼𝑉 𝑆
𝐼𝑉 𝑆max

)2
to the reward function.

This additional term allows penalizing also the integral value 𝐼𝑉 𝑆 =
1
𝑇 ∫ 𝑇

0 𝐼𝑉 𝑆 (𝜏)𝑑𝜏 of the current in the in-vessel coils. The reward function
parameters for the considered training are summarized in Table 3. A
preliminary performance assessment of the three considered agents is
reported in what follows.

Validation without disturbances
The model corresponding to Eq. #2 is used to assess the capability of

he various agents to stabilize a plasma different from the one used for
raining when no external disturbances are applied. At the beginning
f the considered simulation, the plasma starts from the considered
quilibrium. The RL-based agent, however, can lead to small initial
isplacement in the plasma position that needs to be actively compen-
ated. Fig. 8 shows the in-vessel circuit voltage 𝑢𝑉 𝑆 and current 𝐼𝑉 𝑆 ,
he plasma current 𝐼𝑝, and the variation of the plasma centroid vertical
osition with respect to the equilibrium value 𝛿𝑍 for the considered
5

𝑐 r
raining options. It can be noticed that, although all the considered
gents achieve the stabilization objective, the ones corresponding to
raining B and Training C are preferable, mainly because they require
lower steady-state in-vessel coil current since they bring back the

entroid closer to its equilibrium value.

alidation in presence of a vertical displacement event
Further validation is performed by considering the rejection of a

ertical Displacement Event (VDE). A VDE is an uncontrolled growth
f the plasma unstable vertical mode. It can be considered as an instan-
aneous change in plasma vertical position and surrounding currents.
ence, it can be modeled by properly initializing the value of the
lasma model (1) state. Specifically, in the case of a VDE the plasma
odel’s initial state is obtained by computing the unstable eigenvector

f the associated initial model and rescaling it so that the corresponding
utput on the 𝑍𝑐 channel has the desired amplitude (see also [14]).

For the agents validation, a VDE of 5 cm has been applied to Eq. #3
nd Fig. 9 shows the comparison between the results obtained using the
hree considered VS agents. Also in this case the agents corresponding
o Training B and Training C allow to minimize the steady-state current
n the in-vessel coil, confirming the results obtained with Eq. #2. More-
ver, the agent corresponding to Training C shows a smoother behavior
n terms of plasma current and vertical displacement variations.

omparison with a linear VS

A comparison between a model-based linear VS algorithm and
he validated VS agents is reported in Fig. 10. The former controller
omputes the voltage 𝑢𝑉 𝑆 to be applied to the in-vessel coils as a com-
ination of the plasma vertical speed �̇�𝑐 and of the current 𝐼𝑉 𝑆 flowing
n the VS circuit. The interested reader can refer to [12,15] for more
etails; in particular in [12] a detailed discussion on how to tune the
inear controller gains in order to improve robustness is given. In order
o compare the two considered approaches, here we report the results
f the simulation of a 5 cm VDE applied to Eq. #3. For this considered
ase, Fig. 10 shows that all the RL agents have performance similar to
he model-based VS, in terms of settling time. Moreover, RL approaches
equire a lower control effort in terms of applied voltage, during the
nitial phase of the simulation, when the plasma displacement with
espect to the equilibrium value is the maximum.
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Fig. 9. Rejection of a 5 cm VDE applied to the linear model corresponding to Eq. #3. The time traces of the 𝑢𝑉 𝑆 voltage, the 𝐼𝑉 𝑆 current, the plasma current 𝐼𝑝, and the vertical
displacement of the plasma centroid 𝛿𝑍𝑐 with respect to the equilibrium are shown.
Fig. 10. Comparison between the model-based linear VS algorithm (purple trace) and the RL agents corresponding to Training A (blue trace), Training B (blue trace), Training C
red trace) in case of rejection of a VDE of 5 cm applied to Eq. #3.
P
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. Conclusions

In this work, we investigated the possibility of controlling the
nstable vertical dynamic of a tokamak plasma by means of an RL-
ased controller. RL allowed the implementation of a single VS agent
hat can deal with different plasma operation conditions without the
eed of adapting the controller parameters. The tuning of the DDPG
yper-parameters was illustrated by means of a sensitivity analysis.
6

i

reliminary results obtained in simulation for the ITER VS system have
een also shown.
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